

2003 IEEE International Workshop on Information Assurance (IWIA 2003) March 24, 2003

Intrusion Detection Force: An Infrastructure For Internet-Scale Intrusion Detection

Lawrence Teo^{1,2} Yuliang Zheng^{1,2} Gail-Joon Ahn¹

¹Laboratory of Information Integration, Security, and Privacy (LIISP)
University of North Carolina at Charlotte,
Charlotte, NC, USA

²Calyptix Security Corporation Charlotte, NC, USA

{lcteo,yzheng,gahn}@uncc.edu

:::The Problem

- Current Intrusion Detection Systems (IDSs)
 - Deployed separately
 - Do not communicate with one another
 - Do not communicate with other security products
- Sophisticated and large-scale attacks are becoming increasingly common
 - SQL Slammer
- Potential of current IDSs is becoming limited

:::Information Sharing

- Organizations will be able to talk to one another
- Share information on ongoing and early attacks
- Take proactive measures before the attacks occur
- A more intelligent way to detect and respond to sophisticated attacks

:::Intrusion Detection Force (IDF)

- An Internet-Scale Intrusion Detection Force (IDF)
 - Information sharing among organizations
 - Network data, not proprietary data
- Detect and reduce the impact of
 - Distributed denial of service attacks
 - Internet worms, such as SQL Slammer
 - Evasive attacker activity
 - Abuse of systems as launchpads

:::Outline

- Requirements of the IDF
- Architecture and Design
- Major Components
- Applications
- Current Tests
- Future Directions

:::Requirements of the IDF

Information	Sharing
-------------	----------------

- "Glue" of the IDF
- Inter-organizational info sharing
- Network data, not proprietary
- Privacy

Scalability

- Scale to millions of hosts
- Gradual rollout
- Planning to scale

Security

- Hostile, non-trusting environment
- Unreliable underlying network
- Confidentiality
- Integrity
- Availability

Survivability

- Capability of system to fulfill mission in a timely manner
- Unreliable underlying network
- Application-level fault tolerance
- Existing system-level fault tolerance mechanisms

:::Other Requirements

- Interoperability
 - Support for heterogeneous environments
- Extensibility
 - Design new potential applications
- Balance between usability and security
 - Usable for both novice and advanced users

Architecture & Design

:::Architecture and Design

- How do we fulfill the requirements?
- Seven design decisions
- Hierarchical model
- Entities (Basic building blocks)

:::Seven Design Decisions

- 1. Real-time detection
- 2. Active/passive response
- 3. Audit sources from both host and network
- 4. High degree of interoperability
- 5. Distributed data collection
- 6. Distributed data analysis
- 7. High security on IDF itself

:::IDF Hierarchical Model

- Two levels
- Simple
 - Only two types of entities to implement
 - Keep it as simple as possible, because the IDF is going to be very large
- By allowing the entities to link to each other, we can achieve scalability

:::IDF Architecture

:::IDF Entities

- Node
 - Host running an IDF agent
- Collective
 - Collection of nodes. Nodes in a collective forward information to each other
- Supernode
 - Special node that provides higher-level services to collectives

- Super-collective
 - Collection of supernodes
- Zone
 - Area of the IDF under the authority of the supernode collective

Major Components

:::Eight Major Components

Foundation

- 1. IDF Adaptation Layer
- 2. Communication and Recovery Subsystem

Core Components

- 3. Data Collection Sensor
- 4. Analysis Engine
- 5. Response Engine

Other Components

- 6. Vulnerability Database Interface
- 7. Software Updates Distribution Engine
- 8. Plugin Extension Engine

IDF Components

:::IDF Adaptation Layer (IDFAL)

- Integration component
- Interfaces with existing security technologies
 - Firewalls, IDSs, etc.
- Translates platformspecific details for higher-level IDF services

...Communication and Recovery ""Subsystem

- Communication at the node level
 - Node-to-node, node-to-supernode, supernode-tosupernode, supernode-to-node
 - Node addressing and routing, congestion control
 - Registration of node with supernode
- Communication at the collective level
 - Node additions and removals, and node states
- Recovery
 - Data replication
 - Collective reconstruction

:::Core Components

- Data Collection Sensor
 - Gather events, wrap around IDSs
- Analysis Engine
 - Multiple analysis techniques to identify suspicious trends across zones
 - Audit reduction
- Response Engine
 - Generic interface to actual response mechanism
 - Countermeasures and proactive measures

:::Other Components

- Vulnerability Database Interface (VDI)
 - Interface to IDF and public vulnerability databases
 - Up-to-date information for software updates and analysis engine
- Software Updates Distribution Engine
 - Preemptive fix to vulnerabilities before they are exploited
- Plugin Extension Engine
 - Allow third-party plugins
 - Plugins need to be authenticated

:::Applications

- Internet-scale intrusion detection
 - Large-scale distributed intrusion detection
- Proactive intrusion prevention
 - Preemptively set up defenses to prevent intrusions
- Policy enforcement
 - Nodes and zones facilitate policy enforcement
- Trust management
 - Trust management among nodes
- Incident handling
 - Assist law enforcement with results previously not attainable

Tests

:::Current Prototype

Software updates distribution engine: Small, fast to prototype, self-contained

Test requirements	Software updates distribution engine
Interoperability	Developing software updates in platform independent manner is not difficult
Basic node-supernode communication	Easy to define roles of nodes and supernodes
Response times	Can measure delivery and update times

:::Performing the Test

- Register nodes with supernodes
 - Issue signed certificates beforehand
 - Register node configuration with supernodes in XML format via SSL
- Make updates available on repositories
- Once matching config is found, deliver the update to the node and apply it

:::Results

Update	Method	CPU	Size	S1	S2
sudo 1.6.5	Custom	400MHz	71.2KB	0.06s	0.06s
pine 4.44	rpm	166MHz	2632KB	1.55s	19.76s
wu-ftpd 2.6.1	dpkg	700MHz	250KB	0.24s	4.1s

- S1 = Download speed
- S2 = Installation speed
 - Including integrity check

:::Future Directions

- Design of communication and recovery protocols
- Privacy mechanisms
- Interoperability
 - Upgrading test systems
 - Adding new machine architectures, firewalls, IDSs, etc.
- Scalability
 - Simulation of collectives and super-collectives with virtual machines
- Extending into wireless area

::: Development Plan

:::Related Work

- Distributed Intrusion Detection Systems
 - AAFID, GrIDS, DIDS, CSM
- Internet-Scale Operating Systems
 - Chord, OceanStore, Tapestry
- Peer-to-Peer Systems
 - Gnutella, distributed.net, Freenet

:::Discussion

- Information sharing
- Privacy
- Legislation
- Achieving survivability is a difficult challenge
 - One method: use out-of-band non-Internetbased communication methods

::: Other IDF-related Publications

- L. Teo, Y. Zheng: "Secure and Automated Software Updates Across Organizational Boundaries", Proceedings of the 2002 IEEE Workshop on Information Assurance, West Point, NY, June 17-19, 2002, pp. 212-219.
- L. Teo, G. Ahn, Y. Zheng: "Dynamic and Risk-Aware Network Access Management", Proceedings of the 8th ACM Symposium on Access Control Methods and Technologies (SACMAT 2003), June 1-4, 2003, Como, Italy. (To appear)

:::Conclusion

- Information sharing is critical for future security systems
- Intrusion Detection Force (IDF) is our ambitious project to enable Internet-scale intrusion detection and response

Questions?

